Isometric Circles and Arcs

Circles appear as ellipses, and arcs as elliptical arcs on an isometric drawing. You must properly align isometric circles and arcs with the appropriate isometric plane. See Figure 4A-1. The minor axis of an ellipse always aligns with the centerline axis of the circular feature. It is also important to locate the correct center point.

The Isocircle option of the ELLIPSE tool allows you to construct isometric circles and arcs easily. The Isocircle option is available only when Isometric snap mode is active. You must also establish the appropriate isometric plane on which to orient the isometric circle or arc. Set the isometric plane using the ISOPLANE tool. See Figure 4A-2. Refer to the supplemental material for Chapter 3 for information on Isometric snap mode and the ISOPLANE tool.

Figure 4A-1. Construct isometric circles as ellipses, using the correct orientation on the isometric planes. Notice that the minor axis always aligns with the axis centerline.
After you activate **Isometric snap** mode and choose the appropriate isoplane, access the **ELLIPSE** tool to draw an isometric circle. Select the **Isocircle** option and then specify the location of the circle axis, or center point. Then specify the radius of the circle, or choose the **Diameter** option to specify the diameter. Enter a numerical value, or pick a location along an isometric angle. See Figure 4A-3.

PROFESSIONAL TIP

To change the isoplane while using the **ELLIPSE** tool, issue the **ISOPLANE** tool transparently by pressing the [F5] key.
Figure 4A-3. The steps required to construct an isocircle on the top isoplane, and an example of an isocircle drawn on the left isoplane.

Activity 4A-1

1. Start a new drawing from scratch using the imperial format.
2. Access the Drafting Settings dialog box. On the Snap and Grid tab, pick the Isometric snap radio button, enter .5 for the Y snap and grid spacing values, and pick the 2D model space check box in the Grid Style area to set the grid to a dot pattern.
3. Toggle the Grid and Snap modes on from the status bar if they are not active.
4. Access the LINE tool and use the grid and snaps to draw the isometric view of a 3-unit cube shown below. Change the isoplane orientation as appropriate to draw on each isometric plane.

(Continued.)
Activity 4A-1

5. Access the ELLIPSE tool and use the Isocircle option to draw an isometric circle on each side of the cube as shown. Center each isometric circle at the center of the corresponding cube face. Change the isoplane orientation as appropriate to draw on each isometric plane. Refer to the following instructions for each ellipse:

Ellipse 1: Pick a radius of .5 using the crosshairs.
Ellipse 2: Enter a radius of .75 at the keyboard.
Ellipse 3: Use the Diameter option to enter a diameter of .6 at the keyboard.

6. Save the drawing as ACT4A-1.
Drawing Isometric Arcs

Draw isometric arcs to represent common features, such as fillets and rounds. Activate Isometric snap mode and choose the appropriate isoplane. Then access the ELLIPSE tool to draw an isometric arc. Select the Arc option, followed by the Isocircle option. Then specify the location of the arc axis, or center point. Specify the radius of the arc or choose the Diameter option to specify the diameter. Enter a numerical value or pick a location along an isometric angle. Finally, select the start and end angles for the elliptical arc. See Figure 4A-4A. The start and end angles are the angular relationships between the center of the ellipse and the arc endpoints. The angle of the first axis establishes the angle of the elliptical arc. Figure 4A-4B shows additional examples of isometric arcs added to complete a mechanical part drawing. Representing tangent edges using phantom lines as shown on the right is an option, but is not common practice.

PROFESSIONAL TIP

Use Ortho mode to aid in selecting accurate start and end angles for an isometric arc.

NOTE

You can edit an ellipse or elliptical arc created using the Isocircle option of the ELLIPSE tool just as you would any other ellipse object. However, remember that the radius and diameter of an isometric circle or arc forms along isometric angles, not the axis endpoints of the ellipse. Therefore, do not use axis endpoint grips to edit an isometric circle or arc. Use a 120° rotation angle to rotate an isometric circle or arc onto a different isometric plane.
Figure 4A-4. A—The steps required to construct an isocircle arc on the Top isoplane. B—Additional isometric arcs added to the Top, Left, and Right isoplanes.

1. Specify the center point
2. Specify the radius or diameter
3. Specify the start angle (30° in this example)
4. Specify the end angle (150° in this example)
Activity 4A-2

Start a new drawing for each of the following objects using a decimal-unit isometric template that includes active isometric grid and snap modes. If you do not have a template with these characteristics, create a template now. Set the grid to display as a pattern of dots on the screen. Change the isoplane orientation appropriately as you work to draw on each isometric plane.

1. Draw an isometric part view similar to the drawing shown below using dimensions of your choice. Save the drawing as ACT4A-2.

2. Draw an isometric part view similar to the drawing shown below using dimensions of your choice. Save the drawing as ACT4A-3.
Activity 4A-2

3. Draw an isometric part view similar to the drawing shown below using dimensions of your choice. Save the drawing as ACT4A-4.

4. Draw an isometric part view similar to the drawing shown below using dimensions of your choice. Save the drawing as ACT4A-5.